corn plant with thought bubbleIf plants could communicate with their tenders, what would they have to say?

This isn’t the preposterous hypothetical question it appears because plants do in fact, speak a language, though no human ear can perceive it. The language of plants is embedded in a complex of biochemical signals that are constantly venting off in fragments of cryptic semaphore, day and night, without surcease until the very end.  Scientists have devised numerous ways of interrogating a plant’s vital signs via semiconductor devices, optical sensors, and microchips and converting the signals to quantitative information about plant status: a data stream language, if you will. Photosynthesis is perhaps the most familiar trait distinguishing plants; it is, without exaggerating, the engine powering twenty-first-century society, for example: providing our daily sustenance, food, and the oxygen we breathe; energy production needed to heat our homes, cook our food, broadcast the internet, and fuel our modes of transportation. Human knowledge of photosynthesis dates back 350 years; yet our ability to elicit phenomenological and biophysical information about its inner mechanisms has only emerged, gradually, since the 1930s.  Chlorophyll fluorescence induction, or “F” as it’s known by plant scientists, is one powerful technique used to probe the performance and well-being of photosynthesis. Continue reading